Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(3): e0092623, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38299838

RESUMEN

We report 36 whole-genome sequences, along with annotations, of fermentative (n = 12) and spoilage associated (n = 6) lactic acid bacteria, Lysinibacillus (n = 3), Streptococcus (n = 1), and Proteobacteria (n = 14) isolated from commercial cucumber fermentations. Fifty-three percent of the genome sequence assemblies consist of 1-4 contigs, and the remainder have fewer than 16.

2.
Hortic Res ; 10(12): uhad217, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130599

RESUMEN

The Hydrangea genus belongs to the Hydrangeaceae family, in the Cornales order of flowering plants, which early diverged among the Asterids, and includes several species that are commonly used ornamental plants. Of them, Hydrangea macrophylla is one of the most valuable species in the nursery trade, yet few genomic resources are available for this crop or closely related Asterid species. Two high-quality haplotype-resolved reference genomes of hydrangea cultivars 'Veitchii' and 'Endless Summer' [highest quality at 2.22 gigabase pairs (Gb), 396 contigs, N50 22.8 megabase pairs (Mb)] were assembled and scaffolded into the expected 18 pseudochromosomes. Utilizing the newly developed high-quality reference genomes along with high-quality genomes of other related flowering plants, nuclear data were found to support a single divergence point in the Asterids clade where both the Cornales and Ericales diverged from the euasterids. Genetic mapping with an F1 hybrid population demonstrated the power of linkage mapping combined with the new genomic resources to identify the gene for inflorescence shape, CYP78A5 located on chromosome 4, and a novel gene, BAM3 located on chromosome 17, for causing double flower. Resources developed in this study will not only help to accelerate hydrangea genetic improvement but also contribute to understanding the largest group of flowering plants, the Asterids.

3.
Front Plant Sci ; 14: 1184112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034563

RESUMEN

As sequencing costs decrease and availability of high fidelity long-read sequencing increases, generating experiment specific de novo genome assemblies becomes feasible. In many crop species, obtaining the genome of a hybrid or heterozygous individual is necessary for systems that do not tolerate inbreeding or for investigating important biological questions, such as hybrid vigor. However, most genome assembly methods that have been used in plants result in a merged single sequence representation that is not a true biologically accurate representation of either haplotype within a diploid individual. The resulting genome assembly is often fragmented and exhibits a mosaic of the two haplotypes, referred to as haplotype-switching. Important haplotype level information, such as causal mutations and structural variation is therefore lost causing difficulties in interpreting downstream analyses. To overcome this challenge, we have applied a method developed for animal genome assembly called trio-binning to an intra-specific hybrid of chili pepper (Capsicum annuum L. cv. HDA149 x Capsicum annuum L. cv. HDA330). We tested all currently available softwares for performing trio-binning, combined with multiple scaffolding technologies including Bionano to determine the optimal method of producing the best haplotype-resolved assembly. Ultimately, we produced highly contiguous biologically true haplotype-resolved genome assemblies for each parent, with scaffold N50s of 266.0 Mb and 281.3 Mb, with 99.6% and 99.8% positioned into chromosomes respectively. The assemblies captured 3.10 Gb and 3.12 Gb of the estimated 3.5 Gb chili pepper genome size. These assemblies represent the complete genome structure of the intraspecific hybrid, as well as the two parental genomes, and show measurable improvements over the currently available reference genomes. Our manuscript provides a valuable guide on how to apply trio-binning to other plant genomes.

4.
BMC Genomics ; 24(1): 409, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474911

RESUMEN

BACKGROUND: Muscadine grape (Vitis rotundifolia) is resistant to many of the pathogens that negatively impact the production of common grape (V. vinifera), including the bacterial pathogen Xylella fastidiosa subsp. fastidiosa (Xfsf), which causes Pierce's Disease (PD). Previous studies in common grape have indicated Xfsf delays host immune response with a complex O-chain antigen produced by the wzy gene. Muscadine cultivars range from tolerant to completely resistant to Xfsf, but the mechanism is unknown. RESULTS: We assembled and annotated a new, long-read genome assembly for 'Carlos', a cultivar of muscadine that exhibits tolerance, to build upon the existing genetic resources available for muscadine. We used these resources to construct an initial pan-genome for three cultivars of muscadine and one cultivar of common grape. This pan-genome contains a total of 34,970 synteny-constrained entries containing genes of similar structure. Comparison of resistance gene content between the 'Carlos' and common grape genomes indicates an expansion of resistance (R) genes in 'Carlos.' We further identified genes involved in Xfsf response by transcriptome sequencing 'Carlos' plants inoculated with Xfsf. We observed 234 differentially expressed genes with functions related to lipid catabolism, oxidation-reduction signaling, and abscisic acid (ABA) signaling as well as seven R genes. Leveraging public data from previous experiments of common grape inoculated with Xfsf, we determined that most differentially expressed genes in the muscadine response were not found in common grape, and three of the R genes identified as differentially expressed in muscadine do not have an ortholog in the common grape genome. CONCLUSIONS: Our results support the utility of a pan-genome approach to identify candidate genes for traits of interest, particularly disease resistance to Xfsf, within and between muscadine and common grape.


Asunto(s)
Vitis , Xylella , Vitis/microbiología , Resistencia a la Enfermedad/genética , Xylella/genética , Cromosomas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
5.
Biomolecules ; 13(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37189337

RESUMEN

Background: The house cricket, Acheta domesticus, is one of the most farmed insects worldwide and the foundation of an emerging industry using insects as a sustainable food source. Edible insects present a promising alternative for protein production amid a plethora of reports on climate change and biodiversity loss largely driven by agriculture. As with other crops, genetic resources are needed to improve crickets for food and other applications. Methods: We present the first high quality annotated genome assembly of A. domesticus from long read data and scaffolded to chromosome level, providing information needed for genetic manipulation. Results: Gene groups related to immunity were annotated and will be useful for improving value to insect farmers. Metagenome scaffolds in the A. domesticus assembly, including Invertebrate Iridescent Virus 6 (IIV6), were submitted as host-associated sequences. We demonstrate both CRISPR/Cas9-mediated knock-in and knock-out of A. domesticus and discuss implications for the food, pharmaceutical, and other industries. RNAi was demonstrated to disrupt the function of the vermilion eye-color gene producing a useful white-eye biomarker phenotype. Conclusions: We are utilizing these data to develop technologies for downstream commercial applications, including more nutritious and disease-resistant crickets, as well as lines producing valuable bioproducts, such as vaccines and antibiotics.


Asunto(s)
Gryllidae , Animales , Gryllidae/genética , Gryllidae/metabolismo , Agricultura , Productos Agrícolas , Alérgenos/metabolismo , Ingeniería Genética
6.
BMC Biol ; 21(1): 67, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013528

RESUMEN

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Asunto(s)
Ictaluridae , Humanos , Animales , Masculino , Femenino , Ictaluridae/genética , Inversión Cromosómica , Ligamiento Genético , Genoma , Mapeo Cromosómico
7.
Front Plant Sci ; 13: 1073542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777543

RESUMEN

Introduction: Virginia-type peanut, Arachis hypogaea subsp. hypogaea, is the second largest market class of peanut cultivated in the United States. It is mainly used for large-seeded, in-shell products. Historically, Virginia-type peanut cultivars were developed through long-term recurrent phenotypic selection and wild species introgression projects. Contemporary genomic technologies represent a unique opportunity to revolutionize the traditional breeding pipeline. While there are genomic tools available for wild and cultivated peanuts, none are tailored specifically to applied Virginia-type cultivar development programs. Methods and respective results: Here, the first Virginia-type peanut reference genome, "Bailey II", was assembled. It has improved contiguity and reduced instances of manual curation in chromosome arms. Whole-genome sequencing and marker discovery was conducted on 66 peanut lines which resulted in 1.15 million markers. The high marker resolution achieved allowed 34 unique wild species introgression blocks to be cataloged in the A. hypogaea genome, some of which are known to confer resistance to one or more pathogens. To enable marker-assisted selection of the blocks, 111 PCR Allele Competitive Extension assays were designed. Forty thousand high quality markers were selected from the full set that are suitable for mid-density genotyping for genomic selection. Genomic data from representative advanced Virginia-type peanut lines suggests this is an appropriate base population for genomic selection. Discussion: The findings and tools produced in this research will allow for rapid genetic gain in the Virginia-type peanut population. Genomics-assisted breeding will allow swift response to changing biotic and abiotic threats, and ultimately the development of superior cultivars for public use and consumption.

8.
PLoS Genet ; 17(3): e1009389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735256

RESUMEN

The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropical japonica rice (Oryza sativa) variety, Carolina Gold, which allowed us to identify structural mutations (>50 bp) and orient them with respect to their ancestral state using the outgroup, Oryza glaberrima. Supporting prior work, we find substantial genome expansion in the sativa branch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use of ab initio estimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection.


Asunto(s)
Genes de Plantas , Mutación , Oryza/genética , Fitomejoramiento , Selección Genética , Productos Agrícolas/genética , Reparación del ADN , Elementos Transponibles de ADN , Ambiente , Interacción Gen-Ambiente , Genoma de Planta , Hibridación Genética , Mutación INDEL , Semillas/genética
9.
Nat Genet ; 52(5): 525-533, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32313247

RESUMEN

Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement.


Asunto(s)
Genoma de Planta/genética , Gossypium/genética , Fibra de Algodón , Domesticación , Epigenómica/métodos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Genómica/métodos , Filogenia , Poliploidía
10.
BMC Plant Biol ; 18(1): 170, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111278

RESUMEN

BACKGROUND: Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. RESULTS: In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. CONCLUSIONS: This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose.


Asunto(s)
Aflatoxinas/metabolismo , Arachis/genética , Dermatoglifia del ADN/métodos , Marcadores Genéticos , Repeticiones de Microsatélite , Aspergillus flavus/química , Dermatoglifia del ADN/economía , Reproducibilidad de los Resultados , Banco de Semillas , Semillas/metabolismo , Semillas/microbiología
11.
Am J Bot ; 104(4): 538-549, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28411209

RESUMEN

PREMISE OF THE STUDY: Qat (Catha edulis, Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described in often contradictory historical documents. We examined the wild origins, human-mediated dispersal, and genetic divergence of cultivated qat compared to wild qat. METHODS: We sampled 17 SSR markers and 1561 wild and cultivated individuals across the historical areas of qat cultivation. KEY RESULTS: On the basis of genetic structure inferred using Bayesian and nonparametric methods, two centers of origin in Kenya and one in Ethiopia were found for cultivated qat. The centers of origin in Ethiopia and northeast of Mt. Kenya are the primary sources of cultivated qat genotypes. Qat cultivated in Yemen is derived from Ethiopian genotypes rather than Yemeni wild populations. Cultivated qat with a wild Kenyan origin has not spread to Ethiopia or Yemen, whereas a small minority of qat cultivated in Kenya originated in Ethiopia. Hybrid genotypes with both Ethiopian and Kenyan parentage are present in northern Kenya. CONCLUSIONS: Ethiopian cultivars have diverged from their wild relatives, whereas Kenyan qat has diverged less. This pattern of divergence could be caused by the extinction of the wild-source qat populations in Ethiopia due to deforestation, undersampling, and/or artificial selection for agronomically important traits.


Asunto(s)
Catha/genética , Teorema de Bayes , Producción de Cultivos , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Etiopía , Marcadores Genéticos/genética , Genotipo , Kenia , Repeticiones de Microsatélite/genética , Filogeografía , Reacción en Cadena de la Polimerasa , Yemen
12.
Genome Announc ; 4(5)2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587816

RESUMEN

Transmissible colistin resistance in the form of an mcr-1-gene-bearing plasmid has been recently reported in Enterobacteriaceae in several parts of the world. We report here the completed genome sequence of an Escherichia coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid.

13.
Appl Plant Sci ; 3(9)2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26421253

RESUMEN

PREMISE OF THE STUDY: Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. METHODS AND RESULTS: Fifteen simple sequence repeats (SSRs) were identified in chloroplast sequences from four Artocarpus transcriptome assemblies. The markers were evaluated using capillary electrophoresis in A. odoratissimus (105 accessions) and A. altilis (73). They were also evaluated in silico in A. altilis (10), A. camansi (6), and A. altilis × A. mariannensis (7) transcriptomes. All loci were polymorphic in at least one species, with all 15 polymorphic in A. camansi. Per species, average alleles per locus ranged between 2.2 and 2.5. Three loci had evidence of fragment-length homoplasy. CONCLUSIONS: These markers will complement existing nuclear markers by enabling confident identification of maternal and clone lines, which are often important in vegetatively propagated crops such as breadfruit.

14.
Molecules ; 20(6): 11400-17, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26111173

RESUMEN

Pouteria sapota is known for its edible fruits that contain unique carotenoids, as well as for its fungitoxic, anti-inflammatory and anti-oxidant activity. However, its genetics is mostly unknown, including aspects about its genetic diversity and domestication process. We did high-throughput sequencing of microsatellite-enriched libraries of P. sapota, generated 5223 contig DNA sequences, 1.8 Mbp, developed 368 microsatellites markers and tested them on 29 individuals from 10 populations (seven wild, three cultivated) from Mexico, its putative domestication center. Gene ontology BLAST analysis of the DNA sequences containing microsatellites showed potential association to physiological functions. Genetic diversity was slightly higher in cultivated than in the wild gene pool (HE = 0.41 and HE = 0.35, respectively), although modified Garza-Williamson Index and Bottleneck software showed evidence for a reduction in genetic diversity for the cultivated one. Neighbor Joining, 3D Principal Coordinates Analysis and assignment tests grouped most individuals according to their geographic origin but no clear separation was observed between wild or cultivated gene pools due to, perhaps, the existence of several admixed populations. The developed microsatellites have a great potential in genetic population and domestication studies of P. sapota but additional sampling will be necessary to better understand how the domestication process has impacted the genetic diversity of this fruit crop.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Pouteria/genética , Variación Genética , Genética de Población , Humanos , México
15.
Appl Plant Sci ; 1(7)2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25202565

RESUMEN

PREMISE OF THE STUDY: Microsatellite loci were isolated and characterized from enriched genomic libraries of Artocarpus altilis (breadfruit) and tested in four Artocarpus species and one hybrid. The microsatellite markers provide new tools for further studies in Artocarpus. • METHODS AND RESULTS: A total of 25 microsatellite loci were evaluated across four Artocarpus species and one hybrid. Twenty-one microsatellite loci were evaluated on A. altilis (241), A. camansi (34), A. mariannensis (15), and A. altilis × mariannensis (64) samples. Nine of those loci plus four additional loci were evaluated on A. heterophyllus (jackfruit, 426) samples. All loci are polymorphic for at least one species. The average number of alleles ranges from two to nine within taxa. • CONCLUSIONS: These microsatellite primers will facilitate further studies on the genetic structure and evolutionary and domestication history of Artocarpus species. They will aid in cultivar identification and establishing germplasm conservation strategies for breadfruit and jackfruit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...